What soil tests are required?

- 1. What parameters you need for analysis and design? depends on ULS or SLS or nat freq
- 2. ULS design: [predominantly: Soil strength parameters]
- 3. SLS & nat freq calculations: Soil Stiffness
- 4. Long term performance: Cyclic behaviour of soils
- 5. Drained or undrained: Soil permeability

Fundamental soil behaviour

- Soil behaviour are large strains
 - ULS loads

Soil behaviour under large number of cycles

 – FLS loads

Resonant column test: coarse-grained soils

- **Clean sands are frictional materials;**
- **Clean sands are also known as cohesionless soils;**
- Strength and stiffness arise from inter-particle forces exerted between the grains

Schematic representation of forces acting at contacts between grains

Resonant column test: non-linear material idealisation

Linear-elastic material: Constant stiffness and zero damping

Resonant column test: coarse-grained soils

Effects of confining stresses on secant reduction curve

Resonant column test: coarse-grained soils Effects of density (degree of packing) on secant reduction curve

Resonant column test: coarse-grained soils

Effects of effective stress on damping

