Steel and Composite Beams

In general, because the temperature distribution in the steel section is nonuniform, the steel section is divided

			Section is divided	
Part i	Temperature	Resultant førce	Lever arm	
	$T_i(^{\circ}C)$	$F_i = p_y(T_i) * A_i(kN)$	top d _i (mm)	≝. F _i *d _i (kN,m)
	`			approximately the
Upper flange	650*0.8=520	-565.81	8	same temperatures.
Web 1	528.13	-86.08	39.8	$-3.4\bar{3}$
Web 2	544.38	<u>-24.10</u>	<u>70.76</u>	<u>-1.71</u>
		55.96	94.56	5.29
Web 3	560.63	73.93	135.0	9.98
Web 4	576.88	67.74	182.6	
Web 5	593.13	61.56	230.2	14.17
Web 6	609.38	55.75	277.8	15.49
Web 7	625.63	50.21	325.4	16.34
Web 8	641.88	44.68	373.0	16.66
Lower flange	650.0	266.16	404.8	<u>107.74</u>
Total	NA	0	NA	188.39

Simple Method in Eurocode 3 Part 1.2

The full plastic bending moment method involves lengthy calculations. For steel temperature distribution based on a steel section supporting a concrete slab, the approximate calculation method is:

$$M_{P,fi} = k_{y,T} M_p / (\kappa_1 \kappa_2)$$

 k_1 =1.0 for uniform heating across section/for composite beam, k_1 =0.7 for steel beam with three sided heating

 k_2 =1.0 for uniform heating along length, k_2 =0.85 for hogging bending moment near supports

Previous example: Section UB406x178x74, steel grade S275, W_{pl} =1501cm³, steel retention factor =0.337 at 650°C, $M_{p,fi}$ =1501* 0.337*0.275/0.7=198.7 kN.m. Compare this to 188.39 kN.m from previous calculations.

Limit of simple method

Critical temperature

4.2.4 Critical temperature

- (1) As an alternative to 4.2.3, verification may be carried out in the temperature domain.
- (2) Except when considering deformation criteria or when stability phenomena have to be taken into account, the critical temperature $\theta_{a,cr}$ of carbon steel according to 1.1.2 (6) at time t for a uniform temperature distribution in a member may be determined for any degree of utilization μ_0 at time t = 0 using:

$$\theta_{\text{a,cr}} = 39,19 \ln \left[\frac{1}{0,9674 \,\mu_0^{3,833}} - 1 \right] + 482 \tag{4.22}$$

where μ_0 must not be taken less than 0,013.

Calculating Load Ratio: Beam Example

Ambient temperature design data:

9m, Dead load = 10.5 kN/m, Imposed Load = 15 kN/m,

UKB 457x152x52, $f_y=355N/mm^2$, $M_{pl}=389 \text{ kN.m}$

Calculating load ratio (assuming ϕ_{fi} =0.5):

UDL=1.0*10.5+0.5*15=18kN/m

 $M_{\text{fire}} = 1/8 * 18 * 9^2 = 182 \text{ kN.m}$

Load ratio = 182/389 = 0.47