Secondary Effects

$M=P \cdot e$

Simply supported beams have no restraints against translation and rotation (deformations).

Secondary Effects

The magnitude of reaction, and hence that of the secondary effects depends upon:

- The magnitude of prestressing force
- The layout of the beam
- Tendon profile

Secondary Effects

Isostatic system (Statically determinate)

Hyperstatic system (Statically indeterminate)

In continuous members, additional restraints at supports causes secondary effects.

Secondary Effects

Pe Primary BMD
statically determinate

Secondary BMD

Guidance

Is the structural system statically indeterminate?
If yes then secondary moments are developed if:

- The tendon has eccentricity with respect the CG of the section (to a non-fixed end) or when
- The tendon has curvature or changes in direction (polygonal tendon)

For the above cases balancing load method can be used

How much are the reactions here?

Internal actions-Equilibrium

$N_{p}(x)=-P(x) \cdot \cos a(x)$
$M_{p}(x)=-e(x) \cdot P(x) \cdot \cos a(x)$
$V_{p}(x)=-P(x) \cdot \sin a(x)$

$$
\begin{gathered}
d V=\frac{P}{\cos d a} d S \quad d a=\frac{d S}{R} \\
d V=P \sin d a \cong P d a \\
p=\frac{d V \cos d a}{d S}=\frac{P \sin d a \cos d a}{d S}=\frac{P d a}{d S}=P \cdot \frac{1}{R}=-u P \\
P=-u P
\end{gathered}
$$

And the curvature can be calculated by the tendon's parabola:

$$
u=(-1 / R)=\frac{-8 f}{\ell^{2}}
$$

Show that: $\mathrm{U}=\mathrm{Pa}$ when tendon changes direction

Pleft

$$
U=\left\{\begin{array}{l}
\text { P.sin a :model (without friction) } \\
\frac{1}{2}[\text { Pleft }+ \text { Pright }] \sin \text { a (with friction) }
\end{array}\right.
$$

From the above figure:
$\mathrm{U} / 2=\mathrm{P} \cdot \sin (\mathrm{a} / 2)$
$U=2 P \cdot \sin (a / 2)=P \cdot a$
Remember: $\sin (a)=2 \cdot \sin (a / 2) \cdot \cos (a / 2)$
If friction is negligible
($\mathrm{T}<0,05 \mathrm{P}$):

$$
P_{\text {right }}=P_{\text {left }}
$$

$\mathrm{U}=\mathrm{P}$ sina $=\mathrm{Pa}$

Equivalent Load Analysis

- Another method of estimating secondary effects
- Can be used to calculate the total moments directly
- Can easily be used for complicated profiles and multiple spans.

Equivalent Load Analysis

Apply these loads to the beam and you get What if you want to calculate the $M_{\text {sec }}$? $M_{\text {tot }}$

Equivalent Load Analysis

